Testing Nelder-Mead Based Repulsion Algorithms for Multiple Roots of Nonlinear Systems via a Two-Level Factorial Design of Experiments
نویسندگان
چکیده
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
منابع مشابه
Armentum: a hybrid direct search optimization methodology
Design of experiments (DOE) offers a great deal of benefits to any manufacturing organization, such as characterization of variables and sets the path for the optimization of the levels of these variables (settings) trough the Response surface methodology, leading to process capability improvement, efficiency increase, cost reduction. Unfortunately, the use of these methodologies is very limite...
متن کاملA constrained, globalized, and bounded Nelder–Mead method for engineering optimization
One of the fundamental difficulties in engineering design is the multiplicity of local solutions. This has triggered much effort in the development of global search algorithms. Globality, however, often has a prohibitively high numerical cost for real problems. A fixed cost local search, which sequentially becomes global, is developed in this work. Globalization is achieved by probabilistic res...
متن کاملA HYBRID MODIFIED GENETIC-NELDER MEAD SIMPLEX ALGORITHM FOR LARGE-SCALE TRUSS OPTIMIZATION
In this paper a hybrid algorithm based on exploration power of the Genetic algorithms and exploitation capability of Nelder Mead simplex is presented for global optimization of multi-variable functions. Some modifications are imposed on genetic algorithm to improve its capability and efficiency while being hybridized with Simplex method. Benchmark test examples of structural optimization with a...
متن کاملFrom Evolutionary Operation to Parallel Direct Search: Pattern Search Algorithms for Numerical Optimization
G.E.P. Box’s seminal suggestions for Evolutionary Operation led other statisticians to propose algorithms for numerical optimization that rely exclusively on the direct comparison of function values. These contributions culminated in the development of the widely used simplex algorithm of Nelder and Mead. Recent examination of these popular methods by the numerical optimization community has pr...
متن کاملOptimum parameters of nonlinear integrator using design of experiments based on Taguchi method
For many physical systems like vehicles, acceleration can be easily measured for the respective states. However, the outputs are usually affected by stochastic noise disturbance. The mentioned systems are often sensitive to noise and structural uncertainties. Furthermore, it is very difficult to estimate the multiple integrals of the signal, acceleration to velocity and velocity to position. In...
متن کامل